We examine the benefits of user cooperation under compute-and-forward. Much
like in network coding, receivers in a compute-and-forward network recover
finite-field linear combinations of transmitters' messages. Recovery is enabled
by linear codes: transmitters map messages to a linear codebook, and receivers
attempt to decode the incoming superposition of signals to an integer
combination of codewords. However, the achievable computation rates are low if
channel gains do not correspond to a suitable linear combination. In response
to this challenge, we propose a cooperative approach to compute-and-forward. We
devise a lattice-coding approach to block Markov encoding with which we
construct a decode-and-forward style computation strategy. Transmitters
broadcast lattice codewords, decode each other's messages, and then
cooperatively transmit resolution information to aid receivers in decoding the
integer combinations. Using our strategy, we show that cooperation offers a
significant improvement both in the achievable computation rate and in the
diversity-multiplexing tradeoff.Comment: submitted to IEEE Transactions on Information Theor