The objective of this paper is to provide a convergent numerical
approximation of the Pareto optimal set for finite-horizon multiobjective
optimal control problems for which the objective space is not necessarily
convex. Our approach is based on Viability Theory. We first introduce the
set-valued return function V and show that the epigraph of V is equal to the
viability kernel of a properly chosen closed set for a properly chosen
dynamics. We then introduce an approximate set-valued return function with
finite set-values as the solution of a multiobjective dynamic programming
equation. The epigraph of this approximate set-valued return function is shown
to be equal to the finite discrete viability kernel resulting from the
convergent numerical approximation of the viability kernel proposed in [4, 5].
As a result, the epigraph of the approximate set-valued return function
converges towards the epigraph of V. The approximate set-valued return function
finally provides the proposed numerical approximation of the Pareto optimal set
for every initial time and state. Several numerical examples are provided