We introduce a new method to efficiently approximate the number of infections
resulting from a given initially-infected node in a network of susceptible
individuals. Our approach is based on counting the number of possible infection
walks of various lengths to each other node in the network. We analytically
study the properties of our method, in particular demonstrating different forms
for SIS and SIR disease spreading (e.g. under the SIR model our method counts
self-avoiding walks). In comparison to existing methods to infer the spreading
efficiency of different nodes in the network (based on degree, k-shell
decomposition analysis and different centrality measures), our method directly
considers the spreading process and, as such, is unique in providing estimation
of actual numbers of infections. Crucially, in simulating infections on various
real-world networks with the SIR model, we show that our walks-based method
improves the inference of effectiveness of nodes over a wide range of infection
rates compared to existing methods. We also analyse the trade-off between
estimate accuracy and computational cost, showing that the better accuracy here
can still be obtained at a comparable computational cost to other methods.Comment: 6 page