This work is concerned with (N-component) hyperbolic system of balance laws
in arbitrary space dimensions. Under entropy dissipative assumption and the
Shizuta-Kawashima algebraic condition, a general theory on the well-posedness
of classical solutions in the framework of Chemin-Lerner's spaces with critical
regularity is established. To do this, we first explore the functional space
theory and develop an elementary fact that indicates the relation between
homogeneous and inhomogeneous Chemin-Lerner's spaces. Then this fact allows to
prove the local well-posedness for general data and global well-posedness for
small data by using the Fourier frequency-localization argument. Finally, we
apply the new existence theory to a specific fluid model-the compressible Euler
equations with damping, and obtain the corresponding results in critical
spaces.Comment: 39 page