All-electrical control of spin transport in nanostructures has been the
central interest and chal- lenge of spin physics and spintronics. Here we
demonstrate on-chip spin polarizing/filtering actions by driving the
gate-defined one dimensional (1D) conductor, one of the simplest geometries for
integrated quantum devices, away from the conventional Ohmic regime. Direct
measurement of the spin polarization of the emitted current was performed when
the momentum degeneracy was lifted, wherein both the 1D polarizer for spin
injection and the analyzer for spin detection were demonstrated. The results
showed that a configuration of gates and applied voltages can give rise to a
tunable spin polarization, which has implications for the development of
spintronic devices and future quantum information processing.Comment: 5 pages, 3 figure