We analyze an optical light curve of the symbiotic system AG Draconis
covering the last 120 years of its history. During the first 32 years the
system was in a quiescence state. Around the year 1922 the star's quiescence
luminosity brightened by 0.29 mag. The last 82 years of the light curve (LC)
are characterized by a series of outbursts of 1-2 magnitude in brightness and
about 100 days in duration. The outbursts are distributed along the time axis
in 6 clusters with a quasi-periodic cycle of some 5300 days. The time intervals
among the outbursts themselves are integral numbers of the period 373.5 days.
During quiescence states the LC oscillates with the binary period of the system
of 550 d. The LC contains also a weak periodic signal with a period of 350 d,
attributed to pulsations of the giant star. Another period of 1160 d is also
present in the light curve, being the sidereal rotation period of the giant
star. We suggest that the outbursts are events of intense mass transfer from
the giant onto the hot component. These are modulated by an interplay between a
solar-like magnetic dynamo cycle operating in the outer layers of the giant,
and a tidal deformation of these layers that circulates the surface of the
giant with the synodic diurnal period of 373.5 Earth days. AG Dra is the 5th
symbiotic system with a light curve that reflects such an intense magnetic and
magnetically modulated activity. (Abridged)Comment: 10 pages, 4 figures. Accepted for publication in MNRA