CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Towards automated design of quantum cascade lasers
Authors
Aleksandra Mirčetić
Dragan Indjin
+7 more
Ortiz V.
Paul Harrison
Radovanović J.
Robert W. Kelsall
Sirtori C.
Vitomir Milanović
Zoran Ikonić
Publication date
15 April 2005
Publisher
'AIP Publishing'
Doi
Abstract
We present an advanced technique for the design and optimization of GaAs/AlGaAs quantum cascade laser structures. It is based on the implementation of the simulated annealing algorithm with the purpose of determining a set of design parameters that satisfy predefined conditions, leading to an enhancement of the device output characteristics. Two important design aspects have been addressed: improved thermal behavior, achieved by the use of higher conduction band offset materials, and a more efficient extraction mechanism, realized via a ladder of three lower laser states, with subsequent pairs separated by the optical phonon energy. A detailed analysis of performance of the obtained structures is carried out within a full self-consistent rate equations model of the carrier dynamics. The latter uses wave functions calculated by the transfer matrix method, and evaluates all relevant carrier–phonon and carrier–carrier scattering rates from each quantized state to all others within the same and neighboring periods of the cascade. These values are then used to form a set of rate equations for the carrier density in each state, enabling further calculation of the current density and gain as a function of the applied field and temperature. This paper addresses the application of the described procedure to the design of lambda~9 µm GaAs-based mid-infrared quantum cascade lasers and presents the output characteristics of some of the designed optimized structures. © 2005 American Institute of Physic
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
White Rose Research Online
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:eprints.whiterose.ac.uk:16...
Last time updated on 28/06/2012
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
Last time updated on 01/04/2019