Abstract

The friction stir welding (FSW) process can be successfully used to achieve defect-free joints in Al-alloys. However, a thorough characterisation of the joints is needed in order to satisfy the stringent requirements of advanced applications such as aerospace, automotive and shipbuilding. In this work, FSW was performed on four different aluminium alloys, namely 5005-H14, 2024-T351, 6061-T6, and 7020-T6 (plate thickness being 5 mm except alloy 5005 which is 3 mm thick). The main objective was to establish the local microstructure-property relationships and to determine the fracture toughness levels of welded plates with weld zone strength undermatching. The FSW welds were void and crack free in all of the investigated alloys. Tensile and fracture toughness properties (in terms of CTOD) of the FSW joints were determined at room temperature in addition to extensive hardness measurements and tensile tests. The effects of strength mismatch and local microstructure on the fracture toughness of these joints were discussed. (orig.)First published in: P.L. Threadhill (ed.): First International Symposium on Friction Stir Welding - Proceedings, June 14-16, 1999, in Thousands Oaks, CA, USA. Cambridge, GB: The Welding Institute Ltd, 1999. CD-ROMAvailable from TIB Hannover: RA 3251(2000/42) / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEDEGerman

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 14/06/2016