Développement de modèles pour l'étude de la formation osseuse en culture tridimensionnelle et en ingénierie tissulaire osseuse

Abstract

La culture tridimensionnelle (3D) et l'ingénierie du tissu osseux sont deux thématiques basées sur l'utilisation de matrices permettant de véhiculer des cellules ostéogéniques dans le but d'obtenir une formation osseuse in vitro et in vivo respectivement. La culture 3D est un enjeu important en biologie car elle permet de restaurer certaines propriétés tissulaires perdues en culture bidimensionnelle (2D) sur plastique. De nombreux travaux sont actuellement dédiés à la mise au point de matrices utilisables comme support de culture 3D des cellules osseuses. Sur la base d'une matrice constituée de particules de phosphate de calcium biphasé (BCP) j'ai mis au point un modèle original de culture 3D qui permet le développement d un tissu ostéoïde et la différenciation spontanée d'ostéoblastes humains en ostéocytes. Ce modèle 3D ouvre une nouvelle voie d étude des ostéocytes qui sont les cellules majoritaires du tissu osseux mais les plus mal connues du fait de leur accessibilité difficile et du manque de modèles d'étude disponibles. L'ingénierie tissulaire osseuse a pour but de reconstruire le stock osseux grâce à l'association de matrices, de facteurs ostéoinducteurs et/ou de cellules ostéogéniques. La majorité des travaux menés actuellement dans ce domaine préconisent l utilisation de cellules stromales mésenchymateuses (MSC) pour améliorer les performances de ces matrices. Cependant le mécanisme d action de ces cellules est encore peu documenté. Basé sur l'utilisation des mêmes particules de BCP, j'ai participé à la mise au point d'un nouveau biomatériau développé et breveté au laboratoire et à son utilisation comme véhicule de MSC de souris pour l'étude de la formation osseuse en site ectopique. La mise au point d'une méthode de suivi quantitatif de la survie des cellules implantées a permis de montrer que ces MSC disparaissaient très rapidement, laissant la place aux cellules de l'hôte qui sont à l'origine du tissu osseux. Nous avons conclu que, dans ce modèle, les MSC implantées jouent très probablement un rôle chimiotactique pour les cellules de l'organisme receveur. Une étude préliminaire des molécules impliquées dans ce rôle chimiotactique à été effectuée, permettant de proposer une nouvelle approche pour l ingénierie tissulaire osseuse.Three-dimensional culture (3D) of bone cells and bone tissue engineering are both based on the use of scaffolds to convey osteogenic cells and obtain in vitro and in vivo bone formation respectively. 3D culture is an important field in cell biology, dedicated to reduce the gap between two-dimensional culture and complex tissue architecture. Many works have described various scaffolds as support for the 3D culture of bone cells but in two studies only the presence of osteocyte-like cells have been detected after very long periods of culture. I have engineered an original model of 3D culture in which human primary osteoblasts are seeded within the interspace of calibrated biphasic calcium phosphate particles (BCP). This system results, after one week, in the development of an osteoid matrix and the spontaneous differentiation of the osteoblasts in osteocytes. This model of primary osteocyte differentiation in 3D is a new tool to gain insights into the biology of osteocytes, which compose over 90-95% of bone cells but are difficult to study due to their accessibility and the very rare models available in vitro. The aim of bone tissue engineering is to regenerate the bone stock through a combination of scaffolds, osteogenic factors and / or osteogenic cells. The majority of the studied in this field advocates the use of mesenchymal stromal cells (MSC) but the mechanism of action of these cells is still poorly documented. Based on the use of BCP particles, I have participated to the development of a new bone substitute, which has been patented in our laboratory. I have used this new biomaterial as a vehicle for mouse MSC in a model of ectopic bone formation. Using a method of quantitative tracking of the implanted cells, I have shown that the implanted MSC disappeared very quickly from the implants whereas host cells were progressively recruited suggesting that host cells are responsible for the bone formation. We have concluded that, in this model, MSC play a chemotactic function towards host cells. A preliminary study of the putative molecules involved in this phenomenon was performed with the aim of proposing a newNICE-BU Sciences (060882101) / SudocSudocFranceF

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 14/06/2016