Warwick Business School, Financial Econometrics Research Centre
Abstract
Combining unbiased forecasts of continuous variables necessarily reduces the error variance below that of the median individual forecast. However, this does not necessarily hold for forecasts of discrete variables, or where the costs of errors are not directly related to the error variance. This paper investigates empirically the benefits of combining forecasts of outperforming shares, based on five linear and nonlinear statistical classification techniques, including neural network and recursive partitioning methods. We find that simple “Majority Voting” improves accuracy and profitability only marginally. Much greater gains come from applying the “Unanimity Principle”, whereby a share is not held in the high-performing portfolio unless all classifiers agree