Structural analysis of molecular nanostructures and thin films

Abstract

Phthalocyanines (Pcs) form crystals whose structure and morphology depend on the growth conditions, leading to changes in the physical properties which are still little understood. Pc thin films and nanostructures have already been exploited in optoelectronic applications and could form the basis of spintronic devices but little or contradictory structural information is available because they are challenging systems to study. Hence the precise determination of the molecular order in these systems is of considerable interest both from a fundamental and technological point of view but requires a combination of complementary techniques. Crystalline powders of α-copper phthalocyanine (CuPc), α-metal-free phthalocyanine (H2Pc) and their mixtures are studied using powder X-ray diffraction (XRD) and found to be isomorphous and adopt a triclinic structure first proposed for α-CuPc (Hoshino et al., 2003). This information is used to study highly textured crystalline α-Pc thin films. The texture reduces the available crystallographic information but allows for the manipulation of the anisotropic physical properties. The Pc molecular plane lies 82±11° to the substrate when deposited on a weakly interacting substrate but at 7 or 9±5° when templated by a layer of perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA). Such an interpretation is different to all those previously given. The change in the texture is confirmed by high resolution transmission electron microscopy (HRTEM) of ultramicrotomed cross-sections of the films. The optimum TEM operating conditions were first determined on sections of CuPc single crystals which demonstrated an information limit of ~5Å with HRTEM. The technique was then applied to the films and the morphology, crystallinity and texturing of the layers is largely retained by the sectioning process. With further refinements it is hoped that this technique could be used to study the properties of interfaces and individual domains in multilayers and blends of organic thin films. Lastly the crystal structure of a new CuPc phase designated as η which forms nanowires as thin as 10nm and shows enhanced absorption in the infra-red (IR) is proposed. XRD, transmission electron diffraction (TED) and lattice potential energy (LPE) minimisation were used to determine the crystal structure: monoclinic P21/a, Z = 2, a = 24.8±0.2Å, b = 3.77±0.02Å, c = 13.2±0.1Å and β = 106±1°. The LPE minimisation was validated by correctly predicting the atomic coordinates of β-CuPc to within 0.05Å.EThOS - Electronic Theses Online ServiceEPSRCGBUnited Kingdo

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 14/06/2016