Genetic mapping of metabolic biomarkers of cardiometabolic diseases

Abstract

Cardiometabolic disorders (CMDs) are a major public health problem worldwide. The main goal of this thesis is to characterize the genetic architecture of CMD-related metabolites in a Lebanese cohort. In order to maximise the extraction of meaningful biological information from this dataset, an important part of this thesis focuses on the evaluation and subsequent improvement of the standard methods currently used for molecular epidemiology studies. First, I describe MetaboSignal, a novel network-based approach to explore the genetic regulation of the metabolome. Second, I comprehensively compare the recovery of metabolic information in the different 1H NMR strategies routinely used for metabolic profiling of plasma (standard 1D, spin-echo and JRES). Third, I describe a new method for dimensionality reduction of 1H NMR datasets prior to statistical modelling. Finally, I use all this methodological knowledge to search for molecular biomarkers of CMDs in a Lebanese population. Metabolome-wide association analyses identified a number of metabolites associated with CMDs, as well as several associations involving N-glycan units from acute-phase glycoproteins. Genetic mapping of these metabolites validated previously reported gene-metabolite associations, and revealed two novel loci associated with CMD-related metabolites. Collectively, this work contributes to the ongoing efforts to characterize the molecular mechanisms underlying complex human diseases.Open Acces

    Similar works