Single Pixel Polarimetric Imaging through Scattering Media

Abstract

Compared to pure intensity-based imaging techniques, polarimetric imaging can provide additional information, particularly about an imaged object's compositional, morphological and microstructural properties. The value of polarimetric imaging has already been demonstrated in various applications, such as early glaucoma detection and cancer discrimination. Its applicability, however, to practical in vivo imaging situations is limited as the object of interest is often located behind a scattering layer, such as biological tissue, which scrambles both the spatial and polarimetric information about the object that is contained in the propagating light. As such, this work set out to find a means of conducting polarimetric imaging through scattering media. Under the assumption that it is possible to illuminate the object plane with the required spatial patterns, single pixel cameras can enable imaging in scattering environments and were hence thoroughly investigated in this thesis as a route to polarimetric imaging through scattering media. A theoretical model for single pixel polarimetric imaging was first developed, and conditions under which the proposed method was feasible were identified and verified using 2D coupled line dipole simulations. The proposed method was further tested through experiments conducted using an in-house custom-built setup, composed of off-the-shelf components. To mitigate noise and to ensure that the obtained polarimetric image was physical, a constrained least squares algorithm was proposed and implemented. Experiments with various test objects hidden behind scattering phantoms showed that single pixel polarimetric imaging was able to successfully reconstruct the polarimetric images of the hidden object, whereas a spatially resolved detector in the same configuration resulted in an image that bore no resemblance to the test object. Further experiments that were conducted with the same test objects hidden behind chicken breast slices were, unfortunately, unable to recover an accurate polarimetric image of the hidden object. Additional investigations identified two factors that had likely affected the image reconstruction - spatial inhomogeneity and temporally varying transmittance of the chicken breast, both of which were unaccounted for in the data processing. On the basis of the experiments and simulations conducted in this work, single pixel polarimetric imaging was found to be a feasible approach for polarimetric imaging through scattering media. Finally, further improvements to establish single pixel polarimetric imaging as a practical technique are discussed.Open Acces

    Similar works