The concrete industry increasingly emphasizes advances in novel materials that promote construction of more resilient infrastructure. Due to its potential to improve concrete durability, internal curing (IC) of concrete by means of superabsorbent polymers (SAP) has been identified as one of the most promising technologies of the 21st century. The addition of superabsorbent polymers into a cementitious system promotes further hydration of cement by providing internal moisture during the hardening and strength development periods, and thus limits self-desiccation, shrinkage, and cracking.
This thesis presents the work performed on the series of cement pastes with varying alkalinity of their pore solutions to provide a better understanding of: (1) the influence of the chemistry of the pore solution (i.e. its level of alkalinity and the type of ionic species present) on the absorption capacity of SAP, and (2) the effectiveness of SAP with different absorption capacities as an internal curing agent.
This research work was divided into three stages: (a) materials characterization, (b) measurement of absorption capacity of SAP in synthetic pore solutions, and (c) evaluation of the internal curing effectiveness of SAP. During the first stage (Materials Characterization), pore solutions were extracted from the fresh (5 minutes old) cement pastes prepared using cements with three different levels of alkalinity. The pH values of the extracted solutions were determined (using the pH meter) and their chemical analysis was performed by means of titration (concentration of hydroxyl), ion chromatography (sulfates and chlorides), atomic absorption (AA) and inductively coupled plasma optical emission spectrometry (ICP) (sodium, potassium and calcium).
The commercial SAP adopted for this study was used with “as-supplied” gradation and with the finer gradation obtained by grinding the original polymer in the 6850 Cryomilling Freezer/Mill. The physical properties of these SAP’s, such as the shape and size of the particles, were determined by optical microscopy combined with image analysis.
The second stage, the absorption capacity of SAP’s, involved determination of the swelling behavior and the absorption capacity of polymers exposed to artificial pore solutions with different levels of alkalinity. The swelling behavior was followed using the optical microscope while the absorption capacity was characterized using the tea bag method. It was found that changes in the chemical compositions of the pore solutions influence the adsorption kinetics and result in different absorption isotherms.
In the third stage, the internal curing effects of inclusion of SAP in cement pastes were evaluated. Mixture proportions of pastes used in this stage of the study were selected based on the absorption capacity of the SAP determined in stage two. The testing of the pastes involved determination of their set times, heat of hydration, and autogenous shrinkage