slides

Exponential Stabilization of Driftless Nonlinear Control Systems using Homogeneous Feedback

Abstract

This paper focuses on the problem of exponential stabilization of controllable, driftless systems using time-varying, homogeneous feedback. The analysis is performed with respect to a homogeneous norm in a non-standard dilation that is compatible with the algebraic structure of the control Lie algebra. Using this structure, we show that any continuous, time-varying controller that achieves exponential stabilization relative to the Euclidean norm is necessarily non-Lipschitz. Despite these restrictions, we provide a set of constructive, sufficient conditions for extending smooth, asymptotic stabilizers to homogeneous, exponential stabilizers. The modified feedbacks are everywhere continuous, smooth away from the origin, and can be extended to a large class of systems with torque inputs. The feedback laws are applied to an experimental mobile robot and show significant improvement in convergence rate over smooth stabilizers

    Similar works