research

Significance Regression: A Statistical Approach to Biased Linear Regression and Partial Least Squares

Abstract

This paper first examines the properties of biased regressors that proceed by restricting the search for the optimal regressor to a subspace. These properties suggest features such biased regression methods should incorporate. Motivated by these observations, this work proposes a new formulation for biased regression derived from the principle of statistical significance. This new formulation, significance regression (SR), leads to partial least squares (PLS) under certain model assumptions and to more general methods under various other model kumptions. For models with multiple outputs, SR will be shown to have certain advantages over PLS. Using the new formulation a significance test is advanced for determining the number of directions to be used; for PLS, cross-validation has been the primary method for determining this quantity. The prediction and estimation properties of SR are discussed. A brief numerical example illustrates the relationship between SR and PLS

    Similar works