research

Vapor Detection, Classification, and Quantification Performance Using Arrays of Conducting Polymer Composite Chemically Sensitive Resistors

Abstract

We describe a method for generating a variety of chemically diverse, broadly responsive, low power vapor sensors. A key to our ability to fabricate chemically diverse sensing elements is the preparation of processable, air stable films of electrically conducting organic polymers. An array of such sensing elements produces a chemically reversible, diagnostic pattern of electrical resistance changes upon exposure to different odorants. Such conducting polymer elements are simply prepared and are readily modified chemically to respond to a broad range of analytes. In addition, these sensors yield a fairly rapid, low power, de electrical signal in response to the vapor of interest, and their signals are readily integrated with software or hardware-based neural networks for purposes of analyte identification. Principle component analysis has demonstrated that such sensors can identify and quantify different airborne organic solvents, and can yield information on the components of gas mixtures

    Similar works