The aim of this study is to investigate the sensitivity of radiative-forcing computations to various contrail
crystal shape models. Contrail optical properties in the shortwave and longwave ranges are derived using
a ray-tracing geometric method and the discrete dipole approximation method, respectively. Both methods
present good correspondence of the single-scattering albedo and the asymmetry parameter in a transition
range (3–8 µm). There are substantial differences in single-scattering properties among 10 crystal models
investigated here (e.g., hexagonal columns and plates with different aspect ratios, and spherical particles). The
single-scattering albedo and the asymmetry parameter both vary by up to 0.1 among various crystal shapes.
The computed single-scattering properties are incorporated in the moderate-resolution atmospheric radiance
and transmittance model(MODTRAN) radiative transfer code to simulate solar and infrared fluxes at the top
of the atmosphere. Particle shapes have a strong impact on the contrail radiative forcing in both the shortwave
and longwave ranges. The differences in the net radiative forcing among optical models reach 50% with
respect to the mean model value. The hexagonal-column and hexagonal-plate particles show the smallest net
radiative forcing, and the largest forcing is obtained for the spheres. The balance between the shortwave
forcing and longwave forcing is highly sensitive with respect to the assumed crystal shape and may even
change the sign of the net forcing. The optical depth at which the mean diurnal radiative forcing changes sign
from positive to negative varies from 4.5 to 10 for a surface albedo of 0.2 and from 2 to 6.5 for a surface albedo
of 0.05. Contrails are probably never that optically thick (except for some aged contrail cirrus), however, and
so will not have a cooling effect on climate