research

First-principles study of phonon linewidths in noble metals

Abstract

Phonon lifetimes in Cu, Ag, and Au at low and high temperatures were calculated along high symmetry directions using density functional theory combined with second-order perturbation theory. Both harmonic and third-order anharmonic force constants were computed using a supercell small displacement method, and the two-phonon densities of states were calculated for all three-phonon processes consistent with the kinematics of energy and momentum conservation. A nonrigorous Grüneisen model with no q-dependence of the anharmonic coupling constants offers a simple separation of the potential and the kinematics, and proved semiquantitative for Cu, Ag, and Au. A rule is reported for finding the most anharmonic phonon mode in fcc metals

    Similar works