research

An analytical and computational investigation of shock-induced vortical flows

Abstract

Interaction of a shock wave with a jet of light gas surrounded by an ambient heavy gas generates vorticity around the perimeter of the jet. This rolls the jet into a pair of counterrotating, finite-core size vortices. The canonical problem is the two-dimensional, unsteady interaction in a finite channel. The dynamics of the vortex pair are controlled by the incident shock strength, the light/heavy gas density ratio, and the channel spacing. Analytical expressions are derived which describe the strength and motion of the vortex pair as a function of these parameters. Numerical simulations shQw good agreement with these models. Various perturbations on the single jet flow are investigated with the goal of destabilizing the vortex pair and further enhancing the mixing. Single jet shape perturbations are relatively ineffective. However, an array of jets can dramatically increase the mixing. Another effective method is to form a reflected shock. Finally, an analogy to the corresponding three-dimensional, steady flows is demonstrated both qualitatively and quantitatively. This allows an understanding of the dynamics and mixing of the two imensional, unsteady flows to be directly applied to three-dimensional, steady flows typical of SCRAMJET designs

    Similar works