research

Quantum algorithm for a generalized hidden shift problem

Abstract

Consider the following generalized hidden shift problem: given a function f on {0,...,M − 1} × ZN promised to be injective for fixed b and satisfying f(b, x) = f(b + 1, x + s) for b = 0, 1,...,M − 2, find the unknown shift s ∈ ZN. For M = N, this problem is an instance of the abelian hidden subgroup problem, which can be solved efficiently on a quantum computer, whereas for M = 2, it is equivalent to the dihedral hidden subgroup problem, for which no efficient algorithm is known. For any fixed positive �, we give an efficient (i.e., poly(logN)) quantum algorithm for this problem provided M ≥ N^∈. The algorithm is based on the “pretty good measurement” and uses H. Lenstra’s (classical) algorithm for integer programming as a subroutine

    Similar works