research

Detection of interstellar oxidaniumyl: Abundant H_2O^+ towards the star-forming regions DR21, Sgr B2, and NGC6334

Abstract

Aims. We identify a prominent absorption feature at 1115 GHz, detected in first HIFI spectra towards high-mass star-forming regions, and interpret its astrophysical origin. Methods. The characteristic hyperfine pattern of the H_2O^+ ground-state rotational transition, and the lack of other known low-energy transitions in this frequency range, identifies the feature as H_2O^+ absorption against the dust continuum background and allows us to derive the velocity profile of the absorbing gas. By comparing this velocity profile with velocity profiles of other tracers in the DR21 star-forming region, we constrain the frequency of the transition and the conditions for its formation. Results. In DR21, the velocity distribution of H_2O^+ matches that of the [C_(II)] line at 158 μm and of OH cm-wave absorption, both stemming from the hot and dense clump surfaces facing the H_(II)-region and dynamically affected by the blister outflow. Diffuse foreground gas dominates the absorption towards Sgr B2. The integrated intensity of the absorption line allows us to derive lower limits to the H_2O^+ column density of 7.2 × 10^(12) cm^(−2) in NGC 6334, 2.3 × 10^(13) cm^(−2) in DR21, and 1.1 × 10^(15) cm^(−2) in Sgr B2

    Similar works