research

Modelling and stability of FAST TCP

Abstract

We introduce a discrete-time model of FAST TCP that fully captures the effect of self-clocking and compare it with the traditional continuous-time model. While the continuous-time model predicts instability for homogeneous sources sharing a single link when feedback delay is large, experiments suggest otherwise. Using the discrete-time model, we prove that FAST TCP is locally asymptotically stable in general networks when all sources have a common round-trip feedback delay, no matter how large the delay is. We also prove global stability for a single bottleneck link in the absence of feedback delay. The techniques developed here are new and applicable to other protocols

    Similar works