'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
This paper introduces a new methodology for tracking signals from individual neurons over time in multiunit extracellular recordings. The core of our strategy relies upon an extension of a traditional mixture model approach, with parameter optimization via expectation-maximimization (EM), to incorporate clustering results from the preceding time period in a Bayesian manner. EM initialization is also achieved by utilizing these prior clustering results. After clustering, we match the current and prior clusters to track persisting neurons. Applications of this spike sorting method to recordings from macaque parietal cortex show that it provides significantly more consistent clustering and tracking results