research

Calculating glass-forming ability in absence of key kinetic and thermodynamic parameters

Abstract

Glass-forming ability (GFA) as defined by a critical cooling rate R_c to vitrify a liquid upon solidification is a complex function of many parameters. Some of the parameters, such as liquid-crystal interfacial energy, temperature-dependent liquid viscosity, and influence of heterogeneities, are crucial but their accurate experimental determination is challenging. Here, instead of relying on the experimental data, we draw random values for the difficult parameters and use the classical theory to examine probabilistic distributions of Rc for two well-known metallic glasses. Direct random parameterization produces extremely broad distributions spanning tens of orders of magnitude. Dramatically sharpened distributions are obtained around experimental R_c upon guiding the random parameterization with limited calorimetric data. The results suggest that it is plausible to determine GFA even in absence of data for crucial parameters

    Similar works