A variety of C−H and C−C bond forming reactions of group 7 carbonyl complexes have been studied as potential steps in a homogeneously catalyzed conversion of syngas to C_(2+) compounds. The metal formyl complexes M(CO)_3(PPh_3)_2(CHO) (M = Mn, Re) are substantially stabilized by coordination of boranes BX_3 (X = F, C_6F_5) in the form of novel boroxycarbene complexes M(CO)_3(PPh_3)_2(CHOBX_3), but these boron-stabilized carbenes do not react with hydride sources to undergo further reduction to metal alkyls. The related manganese methoxycarbene cations [Mn(CO)_(5−x)(PPh_3)_x(CHOMe)]+ (x = 1 or 2), obtained by methylation of the formyls, do react with hydrides to form methoxymethyl complexes, which undergo further migratory insertion under an atmosphere of CO. The resulting acyls, cis- and trans-Mn(PPh_3)(CO)_4(C(O)CH_2OMe), can be alkylated to form the cationic carbene complex [Mn(PPh_3)(CO)_4(C(OR)CH_2OMe)]^+, which undergoes a 1,2 hydride shift to form 1,2-dialkoxyethylene, which is displaced from the metal, releasing triflate or diethyl ether adducts of [Mn(PPh_3)(CO)_4]^+. The acyl can also be protonated with HOTf to form a hydroxycarbene complex, which rearranges to Mn(PPh_3)(CO)_4(CH_2COOMe) and is protonolyzed to yield methyl acetate and [Mn(PPh_3)(CO)_4]^+; addition of L (L = PPh_3, CO) to the manganese cation regenerates [Mn(PPh_3)(CO)_4(L)]^+. Since the original formyl complex can be obtained by the reaction of [Mn(PPh_3)(CO)_5]^+ with [PtH(dmpe)_2]^+, which in turn can be generated from H_2, this set of transformations amounts to a stoichiometric cycle for selectively converting H_2 and CO into a C_2 compound under mild conditions