research

Achievable Throughput in Two-Scale Wireless Networks

Abstract

We propose a new model of wireless networks which we refer to as "two-scale networks." At a local scale, characterised by nodes being within a distance r, channel strengths are drawn independently and identically from a distance-independent distribution. At a global scale, characterised by nodes being further apart from each other than a distance r, channel connections are governed by a Rayleigh distribution, with the power satisfying a distance-based decay law. Thus, at a local scale, channel strengths are determined primarily by random effects such as obstacles and scatterers whereas at the global scale channel strengths depend on distance. For such networks, we propose a hybrid communications scheme, combining elements of distance-dependent networks and random networks. For particular classes of two-scale networks with N nodes, we show that an aggregate throughput that is slightly sublinear in N, for instance, of the form N/ log^4 N is achievable. This offers a significant improvement over a throughput scaling behaviour of O(√N) that is obtained in other work

    Similar works