research

Pole Assignment With Improved Control Performance by Means of Periodic Feedback

Abstract

This technical note is concerned with the pole placement of continuous-time linear time-invariant (LTI) systems by means of LQ suboptimal periodic feedback. It is well-known that there exist infinitely many generalized sampled-data hold functions (GSHF) for any controllable LTI system to place the modes of its discrete-time equivalent model at prescribed locations. Among all such GSHFs, this technical note aims to find the one which also minimizes a given LQ performance index. To this end, the GSHF being sought is written as the sum of a particular GSHF and a homogeneous one. The particular GSHF can be readily obtained using the conventional pole-placement techniques. The homogeneous GSHF, on the other hand, is expressed as a linear combination of a finite number of functions such as polynomials, sinusoidals, etc. The problem of finding the optimal coefficients of this linear combination is then formulated as a linear matrix inequality (LMI) optimization. The procedure is illustrated by a numerical example

    Similar works