research

Multilinear commutators for fractional integrals in non-homogeneous spaces

Abstract

Under the assumption that μ\mu is a non-doubling measure on Rd{\mathbb R}^d, the authors obtain the (Lp,Lq)(L^p,L^q)-boundedness and the weak type endpoint estimate for the multilinear commutators generated by fractional integrals with RBMO(μ)\mathrm{RBMO}(\mu) functions of Tolsa or with OscexpLr(μ)\mathrm{Osc}_{\exp L^r}(\mu) functions for r1r\ge 1, where OscexpLr(μ)\mathrm{Osc}_{\exp L^r}(\mu) is a space of Orlicz type satisfying that OscexpLr(μ)=RBMO(μ)\mathrm{Osc}_{\exp L^r}(\mu)=\mathrm{RBMO}(\mu) if r=1r=1 and OscexpLr(μ)RBMO(μ)\mathrm{Osc}_{\exp L^r}(\mu)\subset\mathrm{RBMO}(\mu) if r>1r>1

    Similar works