We implement microfluidic technology to miniaturize a thermal cycling system for amplifying DNA fragments. By using a microfluidic thermal heat exchanger to cool a Peltier junction, we have demonstrated rapid heating and cooling of small volumes of solution. We use a miniature K-type thermocouple to provide a means for in situ sensing of the temperature inside the microrefrigeration system. By combining the thermocouple, two power supplies controlled by a relay system, and computer automation, we reproduce the function of a commercial polymerase chain reaction thermal cycler and demonstrate amplification of a DNA sample of about 1000 base pairs