'Society for Industrial & Applied Mathematics (SIAM)'
Doi
Abstract
It is shown here that certain systems of nonlinear (parabolic) reaction-diffusion equations have solutions which are approximated by oscillatory functions in the form R(ξ - cτ)P(t^*) where P(t^*) represents a sinusoidal oscillation on a fast time scale t* and R(ξ - cτ) represents a slowly-varying modulating amplitude on slow space (ξ) and slow time (τ) scales. Such solutions describe phenomena in chemical reactors, chemical and biological reactions, and in other media where a stable oscillation at each point (or site) undergoes a slow amplitude change due to diffusion