research

Spacing affects some but not all visual searches: Implications for theories of attention and crowding

Abstract

We investigated the effect of varying interstimulus spacing on an upright among inverted face search and a red–green among green–red bisected disk search. Both tasks are classic examples of serial search; however, spacing affects them very differently: As spacing increased, face discrimination performance improved significantly, whereas performance on the bisected disks remained poor. (No effect of spacing was observed for either a red among green or an L among + search tasks, two classic examples of parallel search.) In a second experiment, we precued the target location so that attention was no longer a limiting factor: Both serial search tasks were now equally affected by spacing, a result we attribute to a more classical form of crowding. The observed spacing effect in visual search suggests that for certain tasks, serial search may result from local neuronal competition between target and distractors, soliciting attentional resources; in other cases, serial search must occur for another reason, for example, because an item-by-item, attention-mediated recognition must take place. We speculate that this distinction may be based on whether or not there exist neuronal populations tuned to the relevant target–distractor distinction, and we discuss the possible relations between this spacing effect in visual search and other forms of crowding

    Similar works