research

The stability of an air-maintained cavity behind a stationary object in flowing water

Abstract

In studies made in the Free Surface Water Tunnel of a projectile running in an air-maintained cavity, the experimental relation between air entrainment rate and cavitation number was determined. The entrainment-rate coefficient CQ = Q/V0d^2, where Q is the air rate in cfs, V0 the free-stream velocity, and d the disk nose diameter, was plotted against cavitation parameter, K = (p0 - pk)/q0 where p0 is the free-stream pressure at the disk center line, pk the cavity pressure, and q0 the free-stream dynamic pressure. This experimental relationship for one single disc is shown for three different velocities in Fig. 1. The curves are similar in shape and each has a minimum value of entrainment coefficient which is designated by CQ^* at a value of K as designated as K^*

    Similar works