research

A Probabilistic Analysis of EM for Mixtures of Separated, Spherical Gaussians

Abstract

We show that, given data from a mixture of k well-separated spherical Gaussians in ℜ^d, a simple two-round variant of EM will, with high probability, learn the parameters of the Gaussians to near-optimal precision, if the dimension is high (d >> ln k). We relate this to previous theoretical and empirical work on the EM algorithm

    Similar works