research

Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device

Abstract

Spatiotemporal pattern formation occurs in a variety of nonequilibrium physical and chemical systems. Here we show that a microfluidic device designed to produce reverse micelles can generate complex, ordered patterns as it is continuously operated far from thermodynamic equilibrium. Flow in a microfluidic system is usually simple—viscous effects dominate and the low Reynolds number leads to laminar flow. Self-assembly of the vesicles into patterns depends on channel geometry and relative fluid pressures, enabling the production of motifs ranging from monodisperse droplets to helices and ribbons

    Similar works