This paper reports a directly observable correlation between the chemical short-range order and the electrical resistivity in metallic glasses. The phase transition corresponding to the first exotherm observed in a differential-scanning-calorimetry (DSC) scan on (Zr1-xHfx)62Ni38 is peculiar in a sense that, contrary to usual metallic glasses, this transition is associated with an increase in electrical resistivity, and x-ray diffraction measurements taken just after the DSC peak shows only the broad diffuse band characteristic of the glassy phase. Electrical resistivity, differential scanning calorimetry, low-temperature superconducting measurements, high-angle x-ray diffraction, transmission electron microscopy, and Mössbauer spectroscopy are used to study this transition in detail