research

Group V Phospholipase A2 Induces Leukotriene Biosynthesis in Human Neutrophils through the Activation of Group IVA Phospholipase A2

Abstract

We reported previously that exogenously added human group V phospholipase A2 (hVPLA2) could elicit leukotriene B4 (LTB4) biosynthesis in human neutrophils (Han, S. K., Kim, K. P., Koduri, R., Bittova, L., Munoz, N. M., Leff, A. R., Wilton, D. C., Gelb, M. H., and Cho, W. (1999) J. Biol. Chem. 274, 11881-11888). To determine the mechanism of the hVPLA2-induced LTB4 biosynthesis in neutrophils, we thoroughly examined the effects of hVPLA2 and their lipid products on the activity of group IVA cytosolic PLA2 (cPLA2) and LTB4 biosynthesis under different conditions. As low as 1 nM exogenous hVPLA2 was able to induce the release of arachidonic acid (AA) and LTB4. Typically, AA and LTB4 were released in two phases, which were synchronized with a rise in intracellular calcium concentration ([Ca2+]i) near the perinuclear region and cPLA2 phosphorylation. A cellular PLA2 assay showed that hVPLA2 acted primarily on the outer plasma membrane, liberating fatty acids and lysophosphatidylcholine (lyso-PC), whereas cPLA2 acted on the perinuclear membrane. Lyso-PC and polyunsaturated fatty acids including AA activated cPLA2 and 5-lipoxygenase by increasing [Ca2+]i and inducing cPLA2 phosphorylation, which then led to LTB4 biosynthesis. The delayed phase was triggered by the binding of secreted LTB4 to the cell surface LTB4 receptor, which resulted in a rise in [Ca2+]i and cPLA2 phosphorylation through the activation of mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2. These results indicate that a main role of exogenous hVPLA2 in neutrophil activation and LTB4 biosynthesis is to activate cPLA2 and 5-lipoxygenase primarily by liberating from the outer plasma membrane lyso-PC that induces [Ca2+]i increase and cPLA2 phosphorylation and that hVPLA2-induced LTB4 production is augmented by the positive feedback activation of cPLA2 by LTB4

    Similar works