A new method for strengthening gold

Abstract

Metal-metal composites were first produced in a copper matrix in the 1970’s, and they have since been produced in several other binary metal systems. This strengthening technique reinforces a ductile metal matrix with a ductile metal second phase. In some binary systems, this technique confers extraordinarily high strength and hardness while still maintaining low electrical resistivity. This article reports on the first gold matrix metal-metal composite, which was produced by deformation processing a 90%Au-10%Ag powder compact. The Au-Ag specimen studied had an ultimate tensile strength of 550 MPa and an electrical resistivity only 8% higher than that of pure Au at a deformation processing true strain of 5.6. The 590 nm average Ag filament thickness in this composite was relatively coarse compared to other deformation processed composites, which suggests that substantially higher strengths would be possible in a gold matrix metal-metal composite using deformation processing to higher true strains to reduce the filament thickness

    Similar works