research

Near-field imaging with two transmission gratings for submicrometer localization of atoms

Abstract

We show theoretically that an atomic pattern with period d can be obtained with 100% visibility even for an infinitely extended source by sending atoms through two transmission gratings with periods d and d/2, respectively, and separated by half the Talbot length LT/2=d^2/2λdB, where λdB is the atomic wavelength and the source is infinitely far away. For a finite source distance, as would be attainable in any real experiment, a small correction to the grating periods and separations restores the period-d pattern. This effect is closely related to the Talbot and Lau effects in classical optics and can be used to localize atoms to a submicrometer scale without a compromise in atomic flux. We first derive compact analytical formulas for the idealized case of a monochromatic source and large gratings and then verify numerically that a finite grating size and velocity dispersion in the beam do not decrease the fringe visibility considerably. Finally, we briefly present an experiment in preparation to exhibit this localization

    Similar works