'Institute of Electrical and Electronics Engineers (IEEE)'
Abstract
The problem of multiple multicast sessions with
intra-session network coding in time-varying networks is considered.
The network-layer capacity region of input rates that can be
stably supported is established. Dynamic algorithms for multicast
routing, network coding, power allocation, session scheduling, and
rate allocation across correlated sources, which achieve stability
for rates within the capacity region, are presented. This work
builds on the back-pressure approach introduced by Tassiulas
et al., extending it to network coding and correlated sources. In
the proposed algorithms, decisions on routing, network coding,
and scheduling between different sessions at a node are made
locally at each node based on virtual queues for different sinks.
For correlated sources, the sinks locally determine and control
transmission rates across the sources. The proposed approach
yields a completely distributed algorithm for wired networks.
In the wireless case, power control among different transmitters
is centralized while routing, network coding, and scheduling
between different sessions at a given node are distributed