Load Balancing for Multiplexing Gains of BBU Pool in 5G Cloud Radio Access Networks

Abstract

Cloud Radio Access Network (C-RAN) is an architecture for 5G cellular networks to improve coverage, increase data rates, enhancing signaling efficiency etc. In C-RAN architecture of 5G cellular networks, multiple Base Station (BS) Base Band processing Units (BBU) are centralized in the cloud. Remote Radio Heads (RRHs) that reside at cell sites will have only antennas and other radio frequency functions. The central cloud based system will provide higher layer protocols of LTEBS that process on a pool of BBUs on top of a pool of computing resources i.e., General Purpose Processors (GPPs). The centralized BBU pool and RRHs are connected with high speed optical fiber links. Each BBU maps to a GPP that has a specified processing capacity and processes In-phase Quadrature (IQ) samples received from Remote Radio Heads (RRHs) deployed at cell sites. A single BBU can serve multiple RRHs based on the limits imposed on processing capacity of GPP. C-RAN helps telecom service providers in cutting down their CAPEX and OPEX by reducing power consumption of BBUs

    Similar works