This paper describes the application of the Real-Time Maude tool and the Maude formal methodology to the specification and analysis of the AER/NCA suite of active network multicast protocol components. Because of the time-sensitive and resource-sensitive behavior, the presence of probabilistic algorithms, and the composability of its components, AER/NCA poses challenging new problems for its formal specification and analysis. Real-Time Maude is a natural extension of the Maude rewriting logic language and tool for the specification and analysis of real-time object-based distributed systems. It supports a wide spectrum of formal methods, including: executable specification; symbolic simulation; breadth-first search for failures of safety properties in infinite-state systems; and linear temporal logic model checking of time-bounded temporal logic formulas. These methods complement those offered by network simulators on the one hand, and timed-automaton-based tools and general-purpose theorem provers on the other. Our experience shows that Real-Time Maude is well-suited to meet the AER/NCA modeling challenges, and that its methods have proved effective in uncovering subtle and important errors in the informal use case specification