In computational biomolecular research, large amounts of simulation data are generated to capture the motion of proteins. These massive simulation data can be analysed in a number of ways to reveal the biochemical properties of the proteins.However, the legacy way of storing these data (usually in the laboratory where the simulations have been run) often hinders a wider sharing and easier cross-comparison of simulation results. The data is commonly encoded in a way specific to the simulation package that produced the data and can only be analysed with tools developed specifically for that simulation package. The BioSimGrid platform seeks to provide a solution to these challenges by exploiting the potential of the Grid in facilitating data sharing. By using BioSimGrid either in a scripting or web environment, users can deposit their data and reuse it for analysis. BioSimGrid tools manage the multiple storage locations transparently to the users and provide a set of retrieval and analysis tools to process the data in a convenient and efficient manner. This paper details the usage and implementation of BioSimGrid using a combination of commercial databases, the Storage Resource Broker and Python scripts, gluing the building blocks together. It introduces a case study of how BioSimGrid can be used for better storage, retrieval and analysis of biomolecular simulation data