Rifted margins form from extension and breakup of the continentallithosphere. If this extension is coeval with a region of hotter lithosphere,then it is generally assumed that a volcanic margin would follow. Herewe present the results of numerical simulations of rift margin evolution byextending continental lithosphere above a thermal anomaly. We find that unlessthe lithosphere is thinned prior to the arrival of the thermal anomalyor half spreading rates are more than ? 50mmyr?1, the lithosphere actsas a lid to the hot material. The thermal anomaly cools significantly by conductionbefore having an effect on decompression melt production. If the lithosphereis thinned by the formation of extensional basins then the thermalanomaly advects into the thinned region and leads to enhanced decompressionmelting. In the North Atlantic a series of extensional basins off the coastof northwest Europe and Greenland provide the required thinning. This observationsuggests that volcanic margins that show slow rates of extension,only occur where there is the combination of a thermal anomaly and previousregional thinning of the lithosphere