A novel tiered sensor fusion approach for terrain characterization and safe landing assessment

Abstract

©2006 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Presented at the 2006 IEEE Aerospace Conference, March 5-11, 2006, Big Sky, MT.DOI: 10.1109/AERO.2006.1655795This paper presents a novel, tiered sensor fusion methodology for real-time terrain safety assessment. A combination of active and passive sensors, specifically, radar, lidar, and camera, operate in three tiers according to their inherent ranges of operation. Low-level terrain features (e.g. slope, roughness) and high-level terrain features (e.g. hills, craters) are integrated using principles of reasoning under uncertainty. Three methodologies are used to infer landing safety: fuzzy reasoning, probabilistic reasoning, and evidential reasoning. The safe landing predictions from the three fusion engines are consolidated in a subsequent decision fusion stage aimed at combining the strengths of each fusion methodology. Results from simulated spacecraft descents are presented and discussed

    Similar works