In this investigation the Reynolds-Averaged Navier-Stokes (RANS)
equations are modified to account for variable density and viscosity of
the two-fluids flow (i.e. water-air), assuming both fluids compressible.
By introducing a preconditioner, the governing equations in terms of
primitive variables are solved for both fluids in a unified manner. The
non-conservative implicit Split Coefficient Matrix Method (SCMM) is
modified to approximate convective flux vectors in the dual time
formulation. The free surface waves inside the tank, due to sloshing, are
implicitly captured by using a level set approach.
The method is illustrated through applications to rectangular and
chamfered tanks subject to sway or roll motions at different filling
levels and excitation conditions (i.e. amplitude and frequency of
oscillation). Comparisons are made between calculated and
experimental pressures, where available