thesis

Study of compressible turbulent flows in supersonic environment by large-eddy simulation

Abstract

A Large-Eddy Simulation (LES) methodology adapted to the resolution of high Reynolds number turbulent flows in supersonic conditions was proposed and developed. A novel numerical scheme was designed, that switches from a low-dissipation central scheme for turbulence resolution to a flux difference splitting scheme in regions of discontinuities. Furthermore, a state-of-the-art closure model was extended in order to take compressibility effects and the action of shock / turbulence interaction into account. The proposed method was validated against fundamental studies of high speed flows and shock / turbulence interaction studies. This new LES approach was employed for the study of shock / turbulent shear layer interaction as a mixing-augmentation technique, and highlighted the efficiency in mixing improvement after the interaction, but also the limited spatial extent of this turbulent enhancement. A second practical study was conducted by simulating the injection of a sonic jet normally to a supersonic crossflow. The validity of the simulation was assessed by comparison with experimental data, and the dynamics of the interaction was examined. The sources of vortical structures were identified, with a particular emphasis on the impact of the flow speed onto the vortical evolution.Ph.D.Committee Chair: Menon, Suresh; Committee Member: Ruffin, Stephen; Committee Member: Sankar, Lakshmi; Committee Member: Seitzman, Jerry; Committee Member: Stoesser, Thorste

    Similar works