A Hybrid Estimation of Distribution Algorithm for Simulation-Based Scheduling in a Stochastic Permutation Flowshop

Abstract

The permutation flowshop scheduling problem (PFSP) is NP-complete and tends to be more complicated when considering stochastic uncertainties in the real-world manufacturing environments. In this paper, a two-stage simulation-based hybrid estimation of distribution algorithm (TSSB-HEDA) is presented to schedule the permutation flowshop under stochastic processing times. To deal with processing time uncertainty, TSSB-HEDA evaluates candidate solutions using a novel two-stage simulation model (TSSM). This model first adopts the regression-based meta-modelling technique to determine a number of promising candidate solutions with less computation cost, and then uses a more accurate but time-consuming simulator to evaluate the performance of these selected ones. In addition, to avoid getting trapped into premature convergence, TSSB-HEDA employs both the probabilistic model of EDA and genetic operators of genetic algorithm (GA) to generate the offspring individuals. Enlightened by the weight training process of neural networks, a self-adaptive learning mechanism (SALM) is employed to dynamically adjust the ratio of offspring individuals generated by the probabilistic model. Computational experiments on Taillard’s benchmarks show that TSSB-HEDA is competitive in terms of both solution quality and computational performance

    Similar works