Specific electrochemical iodination of horse heart myoglobin at tyrosine 103 as determined by Fourier transform ion cyclotron resonance mass spectrometry
The iodination of proteins remains a useful tool in biochemistry for radiolabelling. However,chemical or enzymatic iodination is difficult to control and can give deleterious polyiodination. Previously, we have shown that electrooxidation with nitrite is a rapid method for the selective nitration of tyrosine residues in proteins. In principle, it should be possible to substitute a number of electrooxidisable anions into the tyrosine phenol ring. Electrochemical iodination is more difficult to control than nitration because the rapid anodic oxidation of I− leads to persistent formation of the iodinating triiodide anion. However, application of pulsed electrooxidation and reduction cycles is shown to be an effective procedure for the selective mono and double-iodination of myoglobin, which may have general application to other proteins in
controlling of the level of iodination. Mono- and double-iodination of myoglobin by this method was confirmed by electrospray FT-ICR mass spectrometry. Infrared multiphoton dissociation (IRMPD) enabled localization of the site of mono-iodination to be restricted to either His97 or Tyr103. More extensive sequence coverage was obtained with electron capture dissociation (ECD), allowing unambiguous assignment of the site of iodination to Tyr103