CORE
CO
nnecting
RE
positories
Services
Services overview
Explore all CORE services
Access to raw data
API
Dataset
FastSync
Content discovery
Recommender
Discovery
OAI identifiers
OAI Resolver
Managing content
Dashboard
Bespoke contracts
Consultancy services
Support us
Support us
Membership
Sponsorship
Research partnership
About
About
About us
Our mission
Team
Blog
FAQs
Contact us
Community governance
Governance
Advisory Board
Board of supporters
Research network
Innovations
Our research
Labs
research
Robust Tomlinson-Harashima precoding for non-regenerative multi-antenna relaying systems
Authors
F Gao
YC Wu
M Xia
C Xing
Publication date
1 January 2012
Publisher
'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Cite
Abstract
Conference Theme: PHY and FundamentalsIn this paper, we consider the robust transceiver design with Tomlinson-Harashima precoding (THP) for multi-hop amplify-and-forward (AF) multiple-input multiple-output (MIMO) relaying systems. THP is adopted at the source to mitigate the spatial inter-symbol interference and then a joint Bayesian robust design of THP at source, linear forwarding matrices at relays and linear equalizer at destination is proposed. Based on the elegant characteristics of multiplicative convexity and matrix-monotone functions, the optimal structure of the nonlinear transceiver is first derived. Based on the derived structure, the optimization problem is greatly simplified and can be efficiently solved. Finally, the performance advantage of the proposed robust design is assessed by simulation results. © 2012 IEEE.published_or_final_versionThe 2012 IEEE Wireless Communications and Networking Conference (WCNC), Paris, France, 1-4 April 2012. In IEEE Wireless Communications and Networking Conference Proceedings, 2012, p. 753-75
Similar works
Full text
Open in the Core reader
Download PDF
Available Versions
HKU Scholars Hub
See this paper in CORE
Go to the repository landing page
Download from data provider
oai:hub.hku.hk:10722/165233
Last time updated on 01/06/2016
Crossref
See this paper in CORE
Go to the repository landing page
Download from data provider
info:doi/10.1109%2Fwcnc.2012.6...
Last time updated on 22/07/2021